Package: SBMTrees 1.2

SBMTrees: Sequential Imputation with Bayesian Trees Mixed-Effects Models for Longitudinal Data

Implements a sequential imputation framework using Bayesian Mixed-Effects Trees ('SBMTrees') for handling missing data in longitudinal studies. The package supports a variety of models, including non-linear relationships and non-normal random effects and residuals, leveraging Dirichlet Process priors for increased flexibility. Key features include handling Missing at Random (MAR) longitudinal data, imputation of both covariates and outcomes, and generating posterior predictive samples for further analysis. The methodology is designed for applications in epidemiology, biostatistics, and other fields requiring robust handling of missing data in longitudinal settings.

Authors:Jungang Zou [aut, cre], Liangyuan Hu [aut], Robert McCulloch [ctb], Rodney Sparapani [ctb], Charles Spanbauer [ctb]

SBMTrees_1.2.tar.gz
SBMTrees_1.2.zip(r-4.5)SBMTrees_1.2.zip(r-4.4)SBMTrees_1.2.zip(r-4.3)
SBMTrees_1.2.tgz(r-4.4-x86_64)SBMTrees_1.2.tgz(r-4.4-arm64)SBMTrees_1.2.tgz(r-4.3-x86_64)SBMTrees_1.2.tgz(r-4.3-arm64)
SBMTrees_1.2.tar.gz(r-4.5-noble)SBMTrees_1.2.tar.gz(r-4.4-noble)
SBMTrees_1.2.tgz(r-4.4-emscripten)SBMTrees_1.2.tgz(r-4.3-emscripten)
SBMTrees.pdf |SBMTrees.html
SBMTrees/json (API)
NEWS

# Install 'SBMTrees' in R:
install.packages('SBMTrees', repos = c('https://zjg540066169.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/zjg540066169/sbmtrees/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

bayesian-machine-learninglongitudinal-datamissing-data-imputationopenblascpp

4.40 score 1 stars 10 scripts 2 downloads 5 exports 72 dependencies

Last updated 14 days agofrom:fa40fb295f. Checks:OK: 3 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 11 2024
R-4.5-win-x86_64OKDec 11 2024
R-4.5-linux-x86_64OKDec 11 2024
R-4.4-win-x86_64NOTEDec 11 2024
R-4.4-mac-x86_64NOTEDec 11 2024
R-4.4-mac-aarch64NOTEDec 11 2024
R-4.3-win-x86_64NOTEDec 11 2024
R-4.3-mac-x86_64NOTEDec 11 2024
R-4.3-mac-aarch64NOTEDec 11 2024

Exports:apply_locf_nocbBMTrees_predictionsequential_imputationsimulation_imputationsimulation_prediction

Dependencies:abindarmbackportsbitbit64bootbroomclicliprcodacodetoolscpp11crayondplyrfansiforcatsforeachgenericsglmnetgluehavenhmsiteratorsjomolatticelifecyclelme4magrittrMASSMatrixMatrixModelsmiceminqamitmlmnormtmvtnormnlmenloptrnnetnumDerivordinalpanpillarpkgconfigprettyunitsprogresspurrrquantregR6RcppRcppArmadilloRcppDistRcppEigenRcppProgressreadrrlangrpartshapesnSparseMstringistringrsurvivaltibbletidyrtidyselecttzdbucminfutf8vctrsvroomwithr

SBMTrees: Introduction and Usage

Rendered fromSBMTrees_Introduction.Rmdusingknitr::rmarkdownon Dec 11 2024.

Last update: 2024-12-10
Started: 2024-11-29