Package: SBMTrees 1.2
SBMTrees: Sequential Imputation with Bayesian Trees Mixed-Effects Models for Longitudinal Data
Implements a sequential imputation framework using Bayesian Mixed-Effects Trees ('SBMTrees') for handling missing data in longitudinal studies. The package supports a variety of models, including non-linear relationships and non-normal random effects and residuals, leveraging Dirichlet Process priors for increased flexibility. Key features include handling Missing at Random (MAR) longitudinal data, imputation of both covariates and outcomes, and generating posterior predictive samples for further analysis. The methodology is designed for applications in epidemiology, biostatistics, and other fields requiring robust handling of missing data in longitudinal settings.
Authors:
SBMTrees_1.2.tar.gz
SBMTrees_1.2.zip(r-4.5)SBMTrees_1.2.zip(r-4.4)SBMTrees_1.2.zip(r-4.3)
SBMTrees_1.2.tgz(r-4.4-x86_64)SBMTrees_1.2.tgz(r-4.4-arm64)SBMTrees_1.2.tgz(r-4.3-x86_64)SBMTrees_1.2.tgz(r-4.3-arm64)
SBMTrees_1.2.tar.gz(r-4.5-noble)SBMTrees_1.2.tar.gz(r-4.4-noble)
SBMTrees_1.2.tgz(r-4.4-emscripten)SBMTrees_1.2.tgz(r-4.3-emscripten)
SBMTrees.pdf |SBMTrees.html✨
SBMTrees/json (API)
NEWS
# Install 'SBMTrees' in R: |
install.packages('SBMTrees', repos = c('https://zjg540066169.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/zjg540066169/sbmtrees/issues
bayesian-machine-learninglongitudinal-datamissing-data-imputationopenblascpp
Last updated 14 days agofrom:fa40fb295f. Checks:OK: 3 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 11 2024 |
R-4.5-win-x86_64 | OK | Dec 11 2024 |
R-4.5-linux-x86_64 | OK | Dec 11 2024 |
R-4.4-win-x86_64 | NOTE | Dec 11 2024 |
R-4.4-mac-x86_64 | NOTE | Dec 11 2024 |
R-4.4-mac-aarch64 | NOTE | Dec 11 2024 |
R-4.3-win-x86_64 | NOTE | Dec 11 2024 |
R-4.3-mac-x86_64 | NOTE | Dec 11 2024 |
R-4.3-mac-aarch64 | NOTE | Dec 11 2024 |
Exports:apply_locf_nocbBMTrees_predictionsequential_imputationsimulation_imputationsimulation_prediction
Dependencies:abindarmbackportsbitbit64bootbroomclicliprcodacodetoolscpp11crayondplyrfansiforcatsforeachgenericsglmnetgluehavenhmsiteratorsjomolatticelifecyclelme4magrittrMASSMatrixMatrixModelsmiceminqamitmlmnormtmvtnormnlmenloptrnnetnumDerivordinalpanpillarpkgconfigprettyunitsprogresspurrrquantregR6RcppRcppArmadilloRcppDistRcppEigenRcppProgressreadrrlangrpartshapesnSparseMstringistringrsurvivaltibbletidyrtidyselecttzdbucminfutf8vctrsvroomwithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Sequential Imputation with Bayesian Trees Mixed-Effects Models | SBMTrees-package SBMTrees |
Impute Missing Values Using LOCF and NOCB | apply_locf_nocb |
Bayesian Trees Mixed-Effects Models for Predicting Longitudinal Outcomes | BMTrees_prediction |
Sequential Imputation for Missing Data | sequential_imputation |
Simulate Longitudinal Data with Missingness | simulation_imputation |
Simulate Longitudinal Data for Prediction | simulation_prediction |